sábado, 27 de julho de 2019


Lei de Hubble, também conhecida como a lei Hubble-Lemaître,[1] é um fenómeno que foi sugerido por Edwin Powell Hubble e pelo seu colega Milton L. Humason quando se dedicavam ao estudo das galáxias. Ao recolher e calcular distâncias, localizações e distribuições das galáxias no espaço, através da análise dos seus movimentos, notaram que existia uma relação entre as distâncias e as suas velocidades de afastamento. Muitos dos estudos quantitativos sobre a origem do Universo nasceram das ideias de Hubble aliadas às equações de Einstein. Esta descoberta levou mais tarde à dedução do Big-Bang, que provavelmente marca o início do atual universo. A lei é freqüentemente expressa pela equação v = H0D, com H0 a constante de proporcionalidade - constante de Hubble - entre a "distância apropriada" D para uma galáxia, que pode mudar com o tempo, diferente da distância comovedora, e sua velocidade v, ou seja a derivada da distância apropriada em relação à coordenada do tempo cosmológico. O recíproco de H0 é o tempo de Hubble.[2][3]

    História[editar | editar código-fonte]

    Hubble dedicou muitos anos ao estudo das galáxias, que na altura se julgava serem nebulosas da Via Láctea. Beneficiando do facto de poder utilizar o então maior telescópio do mundo, o telescópio Hooker, e também da teoria de Sitter, proposta por Weyl e Silberstein, Hubble verificou, em 1929, que quase todas as nebulosas tinham um desvio para o vermelho e que as suas velocidades radiais eram proporcionais à sua distância. Georges Lemaître também chegou a esta conclusão em 1927, através dos resultados de Sliphersobre as galáxias espirais.[4] Como naquela época o modelo cosmológico envolvia um universo estático, estas observações foram contra a previsão teórica.

    Efeito Doppler[editar | editar código-fonte]

    Ver artigo principal: Efeito Doppler
    Quando uma fonte luminosa se afasta de um corpo (observador), o comprimento de onda da fonte, visto pelo observador, aumenta (desvio para o vermelho ou “redshift”) e diminui quando a fonte se aproxima (desvio para o azul ou “blueshift”).[5] O Efeito de Doppler relativista é definido matematicamente por:[6][7]
    X
    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde:
     é a velocidade do corpo;
     a velocidade da luz no vácuo;
     é o comprimento de onda emitido;
     é o comprimento de onda observado;

    Parâmetro de Hubble[editar | editar código-fonte]

    Hubble não só verificou que a maioria das galáxias tinha um desvio para o vermelho, mas também que este desvio era tanto maior quanto maior a distância entre as galáxias. Chegou mesmo a construir um gráfico com os resultados de 46 galáxias, mostrando uma relação linear entre distância e desvio para o vermelho. No entanto, as incertezas eram muito grandes, pelo que os resultados não foram considerados conclusivos no imediato. Daqui, surgiu então aquela que é hoje conhecida como a Lei de Hubble:
    X
    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde:
     é a velocidade em ;
     é a distância em Megaparsecs ();
     tem o nome de parâmetro de Hubble e vem em unidades de .
    O primeiro valor que Hubble estimou para este parâmetro, considerado inicialmente uma constante, foi 500 km s-1 Mpc-1. Este valor tinha uma grande incerteza associada, e foi-se alterando à medida que novos dados iam sendo utilizados. Ainda hoje o seu valor não reúne consenso, por se alterar na ordem das unidades cada vez que se obtêm novos dados, mas pensa-se que esteja próximo de 67,15[8][9][10] km s-1 Mpc-1. Note-se que a velocidade considerada nesta equação é a velocidade radial das galáxias, e não a sua velocidade total.

    Como determinar v[editar | editar código-fonte]

    Hubble baseou os seus resultados no desvio para o vermelho (redshift). A velocidade radial pode ser obtida a partir do redshift, através da equação prevista pela Relatividade Restrita:
    Onde:
     é a velocidade radial;
     a velocidade da luz no vácuo;
     é o “redshift”, calculado a partir de:

    Onde:
     é o comprimento de onda observado (de uma onda electromagnética);
     é o comprimento de onda emitido.

    X
    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D